Back paper Examination

Physics III,

B. Math., September - December 2020. Instructor: Prabuddha Chakraborty (pcphysics@gmail.com)

> Duration: 2 hours. Total points: 45.

Please give arguments where necessary. If it is unclear from your answer why a particular step is being taken, full credit will not be awarded. Grades will be awarded not only based on what final answer you get, but also on the intermediate steps.

- 1. (a) A sphere of radius R carries a charge density $\rho(r) = kr$ where k is a constant. There is no charge outside the sphere . Find the electrostatic energy of this configuration. [3]
 - (b) A very long cylindrical object consists of an inner solid cylinder of radius a, and it carries a uniform charge density ρ . Cylindrically coaxial to the inner cylinder, there is a thin cylinder of radius b which carries a equal but opposite total charge as the inner cylinder, which is distributed uniformly over its surface.
 - i. Find the electric field everywhere. [4]
 - ii. Calculate the electric potential everywhere, taking $\Phi = 0$ on the outer cylinder. [4]
 - iii. Calculate the total electrostatic energy per unit length of the object in this configuration. [4]
- 2. (a) A point dipole \vec{p} is embedded of a center of a sphere of radius R. The sphere is filled with a linear dielectric material of dielectric constant ϵ_r . Find the electric potential
 - i. inside the sphere [4].
 - ii. outside the sphere [3].
 - (b) There are two concentric conducting spheres of radii a and b (a < b) such that the inner sphere carries a charge Q and the outer sphere carries a charge -Q. The empty space between the two spheres can be imagined to be divided in two equal hemispherical parts: one is filled with a dielectric material with dielectric material with dielectric constant $\epsilon_r (> 1)$, while the other is just free space.

- i. The electric field in the space between the two spheres. [3]
- ii. The induced surface charge on the inner sphere. [2]
- iii. The polarization charge density induced on the dielectric surface at r = a. Note: The polarization charge will be induced on the dielectric surface, not the conducting surface of the sphere at r = a. [3]
- 3. (a) Imagine that there is a finite volume \mathbb{V} and a surface $\partial \mathbb{V}$ enclosing it. The volume current density \vec{J} is specified throughout \mathbb{V} while **either** the vector potential \vec{A} or the magnetic field \vec{B} is specified throughout $\partial \mathbb{V}$. Prove that the magnetic field is uniquely determined throughout \mathbb{V} with the given information. [6]
 - (b) A long coaxial cable consists of two coaxial cylindrical tubes, which is separated by a linear insulating material of magnetic susceptibility χ_m . The inner cylinder carries a uniform current +I, distributed evenly over the surface while the outer cylinder carries a uniform current -I, again uniformly distributed over the surface.
 - i. Find the magnetic field in the region between the two cylinders. [4]
 - ii. Find the magnetization \$\vec{M}\$ and the bound current(s) in the same region as well as on both surfaces, if any surface current exists [5].